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1.0 STATISTICAL BACKGROUND
                

1.1 Introduction

In most of the following chapters, it will be assumed that readers h a v e
at least taken an introductory course in statistical methods. Some bas ic
concepts will nonetheless be reviewed in this chapter to provide b a c k g r o u n d
for the following material. Some essential definitions are listed here. Students
should look these up in any introductory statistics textbook, but preferably i n
a text that they  have used in the past. An effort has been made to keep t h e
introductory terminology to a minimum, and it will be supplemented as we g o
along, and by auxillary reading.

1.2 Some basic statistical concepts

Random variables

In even quite simple situations, we need to be able to d i s t ingu i sh
between an abstract label for an observation, and the observations that w e
actually make in some real-world situation. Statisticians do this by u s i n g
capital letters (X1, X2, X3, ..., XN) for the abstract label and lower case le t te rs
(x1, x2, ..., xn) for the observations we make in practice. Note that the e l l ips is
(...) means that some letters are left out -- from the first three given, we c a n
infer that these are X4, X5, etc., thru XN-1). More importantly, note that this is a
series of finite length -- N random variables in all. In some cases, we need t o
consider an indefinitely long series of numbers, and write X1, X2, X3, ... t o
indicate that fact. Also, note that the random variables run from X1 to XN, b u t
that the observations end in xn. This is because we often want to sample a
large population and thus only record n of the N possible observations.

 Example 1.1 Coin-tossing Consider a simple coin-tossing example. Put 10
coins in a jar, shake well, spill them out and count the number of
heads. You will get observations like the following table (note that the
individual observation, xI, is the total number of heads out of 10 coins
and that the table is based on 100 tosses of 10 coins):

5,5,2,4,3,4,5,6,5,6
4,6,3,7,4,6,5,3,5,4
6,5,5,2,5,5,3,3,6,7
5,8,4,3,4,5,6,5,5,3
5,6,7,5,8,8,7,3,7,7
5,4,6,5,3,6,4,6,5,4
3,3,6,4,7,5,6,6,3,4
6,4,5,6,6,4,3,4,8,3
6,2,8,5,7,4,6,4,5,6
1,6,6,7,5,3,5,6,7,3

One can continue this process indefinitely, so we may have to consider
an infinite sample space. In many cases, we will be considering finite
sample spaces, although we often will not know N. In this case, we do
know that N = 100, but if we are considering some natural population
over a large area, we likely will not know N, and we may in fact have
estimating N as our objective. There is some ambiguity in notation here
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in that N can be considered to be a fixed population of the outcomes of
100 tosses, or a sample (n) of the infinite number of possible tosses.

Much of statistical methodology consists of describing the outcomes o f
"experiments" like coin-tossing, and making inferences about the process t h a t
led to the set of observations. Most of the theory underlying statistical methods
depends on having a model for the underlying process. Such models a r e
described as probability density functions ( abbreviated as pdf). Such a model
for the coin-tossing example is the binomial distribution, often written a s
Bi(n,p) which says that the probability that a randomly obtained obse rva t i on
denoted as xi  takes the value k is:

                                    Prob{xi = k} = fk = (
n
k  )pk(1-p)n-k                                    (1.1)

where (
n
k  ) is evaluated as  

n !
(n-k) !k !  , in which, for example, 5! (read as "five

factorial") is calculated as 5x4x3x2x1 = 120.

This equation gives the pdf for a binomial having n trials (10 in t h e
coin-tossing example). In the example, the random variable can take 11
possible values 0,1,2,3, ..., 10, but in the 100 trials listed above, we observed n o
zeros and no 9's or 10's. In many practical examples, we won't know the v a l u e
of p, and want to estimate it from the observed data. If we can somehow
establish that it is appropriate to assume the model of eq.(1.1), then we c a n
calculate its expected value, defined as:

since we are here considering a discrete random variable that is only de f ined
on the sample space 0,1,2,...,10, the integral can be replaced with a summat ion ,
and this can be evaluated with some algebra to find that E(x) = np. We can t h e n
turn this around to estimate p from the mean value of our sample, which i s
calculated as the sum of the observations (496) divided by the number o f
observations (100) or E(x) = np = 4.96. Since n=10, we estimate p as:

                                                  p^  = 
4.96
10   = 0.496.

The "hat" over p denotes that it is an estimate of the p a r a m e t e r               , p, of t h e                    
binomial pdf. From the structure of the experiment we can infer that the v a l u e
of p should be about 0.5, that is, if the coin is "unbiased", the probability that i t
turns up heads should be 1/2.

The sample mean, x-   = Σx i /n is often described as a "statistic" de r i ved
from a set of observations. Other commonly used statistics are the samp le
v a r i a n c e :

 E(x) = =   p (1- p)  (1.2)
x=0

x=10
x n-x

                                                           xfxdx x
x

x

x
n

=

=∞

∫ ∑ ( )
0
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and the standard error of the mean, s.e. = [
s2

n  ]
1/2

. Note that statistics a r e

functions of the data. The mean can be written as x-   = 
1
n  (x1 + x2 + x3 + ... + xn) ,

which is a linear function of the random variables x1, x2, ..., xn. There a r e
some simple rules from probability theory about linear functions of r a n d o m
variables that make it easy to derive useful results about means.

No doubt the most important probability density function (pdf) i n
statistics is the normal distribution, which is written as:                                     

The parameter µ is the mean of the distribution and σ the standard dev iat ion.
Tables of the frequency distribution (f(x)) of this distribution are available i n
almost any statistics text, but with parameters µ  = 0 and σ  = 1, which is descr ibed
as the unit normal distribution or standard normal distribution, o f t e n
represented by the notation N(0,1), while observations drawn from eq.(1.3) a r e
described as N(µ,σ2).

1.3 The Central Limit Theorem

A very useful result from mathematical statistics is the Central l im i t
t heo rem:  

"Let X be a random variable with mean µ  and v a r i a n c e
σ 2 , then the random variable Z:

has a distribution that approaches the standard n o r m a l
distribution as n approaches infinity.

This says that, if n is large, then we are virtually guaranteed that the samp le
mean will have nearly a normal distribution. Inasmuch as the great bulk o f
modern statistical methods depend on the normal distribution, this result i s
very reassuring. The important question then is "how large must n be f o r
approximate normality?", and the answer depends very much on t h e
frequency distribution underlying the observed xi .

Example 1.2 Frequency distributions  Consider the data from the coin-
tossing experiment (Example 1.1). The random variable tabulated is the
number of heads in 10 tosses. We can tabulate the frequency of each
outcome (0,1,2,3,...,10 heads) and compare it with the expected
frequency calculated from eq.(1.1), giving the following result:

s
x x

n
i2

2

1
= −

−
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x
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Fig. 1.1 Frequency distribution of number of heads observed in 100 tosses of a coin
compared to number expected from eq.(1.1), Bi(10,0.5).

The observed data are not as symmetrical as the expected binomial
distribution, but the variance (2.34) is a reasonably good approximation
to the variance from the theoretical binomial (2.5) and the mean (4.96)
of 100 trials is very close to the theoretically expected value (5). The
expected binomial variance of the random variable x, the number of heads
in 10 tosses, is readily calculated as np(1-p) = 5(.5)(.5) = 2.5. It is
worthwhile to compare (Fig. 1.2) the expected binomial distribution with
a normal distribution with the theoretical mean and variance, as
calculated from eq.(1.2).
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Fig. 1.2 Expected values from a binomial distribution of outcomes of 10 tosses of coins
compared to frequencies calculated from a normal distribution (broken line) with the
theoretical mean (5) and variance (2.5) for the binomial distribution.

Note that the normal distribution is continuous, i.e. that it takes on
all values over the interval considered and is thus only an
approximation to the discrete distribution of the results of coin-
tossing, in which only integer values can be observed (i = 1,2,3,...,n
heads). Hence the points representing the binomial distribution in Fig.
1.1 properly should not be connected by lines. Because the normal
distribution has an infinite range it isn’t strictly proper to use it in
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Fig. 1.2 because there is only a finite possible range of outcomes (0 to
10). However, it is often used as an approximation. Note, too, that
there is less area under the normal distribution in Fig. 1.2 because
theoretically some observations will be greater and lesser than the
range plotted.

1.4 Simple linear regression

Simple linear regression follows the model:
                                   yi = α  + βxi + εi                                           (1.4)

where yi  is the dependent variable and xi  the independent variable and t h e
error term (ε )  is a deviation from the “true” relationship. Estimates of α  and β
are  frequently written as a and b, giving the estimated or fitted r e l a t io n s h i p
as:

 yi = a + bxi                                               (1.5)

Estimates of regression parameters, α  and β do not require any assumpt ions,
and can be calculated from any set of x,y pairs. However, tests of s i gn i f i cance
and confidence limits require adding some assumptions, which center a r o u n d
the ε i  being normally distributed with mean zero and variance σ2. T h e
assumptions will be discussed after we consider the "machinery" of r e g r e s s i o n
ana lys is .

The estimates are obtained by the method of least-squares,  an i m p o r t a n t
and useful tool that traces back to Legendre and Gauss (known also for t h e
normal distribution) in the early 1800's. Other ways of fitting a straight line t o
data are available, but seldom used. The approach is based on minimizing a s u m
of squared deviations, written as:

S = Σ [y i  -(α  + βxi)]2                                  (1.6)

where the summation runs from 1 to n. This is accomplished by the methods o f
calculus, finding the partial derivatives:

these give the normal equations (α  and β are replaced by the symbols f o r
estimates, a and b):

Σyi = na + bΣxi                                                     (1.8)

Σ yixi = aΣxi + bΣxi2

and these can be solved jointly to give the estimates:

                         =  2 (y  -   - x ) =  0                                     (1.7)i i

∂
∂

 S

α
α βΣ

 =  2 x (y  -   - xi i i

∂
∂

 =S

β
α βΣ ) 0
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Note that the deviations of eq.(1.4) are in the vertical plane, being dev ia t ions
of yi  from the fitted line. Fig. 1.3 shows two of the deviations from a r e g r e s s i o n
line fitted to some counts of deer. The fitted line appears on the graph a l o n g
with a measure of the fit, R2, which will be defined below.
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Fig. 1.3. Simple linear regression fitted to successive counts of the number o f
deer on a study area by the method of least squares.

Table 1.1 gives the analysis of variance results for the deer data from EXCEL, i n
ANOVA format (the analysis of variance is discussed in Chapter 6). Figure 1.4
shows the deviations from the mean of the y-values, and a comparison w i t h
Fig. 1.3 shows why the reduction in Sum of Squares from regression is so
substantial (compare Total SS with Residual SS). The residual S.S. is computed
from the residuals from the fitted regression line, i.e.:

b
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x x
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          Residual SS               = Total SS      -  Regression SS

 Eq.(1.11) can be obtained by introducing the definition of b after squaring t h e
intermediate step above.

Table 1.1 Analysis of variance in regression of deer data of Fig. 1.3 as ob ta ined
in EXCEL.

ANOVA

d f SS MS F P value
Regression 1 28992.89 28992.89 73.25 0.0004
Residual 5 1979.11 395.82
Total 6 30972.00

Coeffici
ents

Standard
Error

t Statistic P-value Lower 95% Upper 95%

Intercept -41.71 16.81 -2 .48 0.06 -84.94 1.51
Slope (b) 32.18 3.76 8.56 0.00 22.51 41.84

EXCEL gives the slope coefficient (b) as "X Variable 1" because the r e g r e s s i o n
program is also set up to handle multiple regression, where there will be 2 o r
more independent variables. ANOVA is discussed in detail in Chapter 6.
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Fig. 1.4 Deer data as in Fig. 1.3 but showing deviations from the mean of the y -
values,  y

_
 . This shows why the Residual S.S. is ordinarily much smaller t h a n

the Total Sum of Squares, which is calculated from the deviations i l lus t ra ted
h e r e .

If the F-value is not significant, there clearly is not much to be g a i n e d
from the regression line. For simple linear regression, the square root of R -
squared (R) is Pearson's product-moment correlation, usually simply r e f e r r e d
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to as "the" correlation coefficient (but written as a lower-case r), a n d
calculated as follows:

The correlation coefficient is related to the slope of the regression line (b) b y
the following expression:

this is sometimes expressed by 
sy
sx

   r, i.e., the ratio of the sample s tanda rd

deviation of y to that of x times r. R2 is also used for multiple r e g r e s s i o n
(described below), where the square root is not the ordinary co r re l a t i on
coefficient, so it is useful to have another expression for R2. This is:

The quantity R2 is often described as measuring the "percent of v a r i a n c e
accounted for by regression", in consequence of the fact that it is the ratio o f
the Regression SS to the Total SS.

Another valuable expression is that of the estimated variance of the slope:

This expression is particularly useful because it makes it poss ib le
to suggest how the estimate of b with smallest variance might be obta ined.
Concentrating the selection of values of xi  at which to observe yi  at the ends o f
the possible range of x will evidently give the smallest obtainable variance o n
b (by giving the largest possible value of the denominator in eq.(1.15)).
However, such a course is recommended only when one can be v i r t u a l l y
certain that the underlying relationship is linear. We will consider ways t o
test for nonlinearity in the regression line in a section below. Note, f o r
example, that the data of Fig. 1.3 seem clearly to follow a curved re la t i onsh ip .
Concentrating the observations at x-values at  the ends of the range o f
observable y would make it impossible to detect such curvature. Whether w e
can concentrate observations depends, of course, on the nature of the data. I n
the case of the counts of deer, we normally make only one observation p e r
year, if the data are an actual census (i.e., a complete count of the deer on a n
area). In the case of a sample estimate of the number present, it may b e
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possible to take repeated, independent samples and thus get several est imates
per year (replicates).

A confidence interval for the slope, b, uses the t-distribution:

Note that α  now represents the significance level for the t-distribution, a n d
not the parameter of a regression line. Additional confidence intervals f o r

values predicted from the regression line of y or  y
_

  for a given x are given i n
standard references (e.g., Snedecor and Cochran). Much more detail o n
regression analysis is given in texts on the subject. An extensive treatment i s
given by Draper and Smith (Applied Regression Analysis, J. Wiley and Sons
Third Edition, 1998). The main parts of the book are presented in m a t r i x
algebra notation, but the authors do give a short introduction to the m a t r i x
algebra that is adequate to let one follow their presentation of r e g r e s s i o n
topics, and not difficult to understand.

In order to justify any significance tests in regression analysis we m u s t
consider the assumptions. The model now becomes:

                        yi = α  + βxi + εi (1.17)

where, as with the ANOVA model, we now assume that the εi are n o r m a l l y

distributed with mean zero, variance σ2, and are uncorrelated ( i ndependen t ) .
An important additional assumption is that the xi  values are all measu red
without error. If the xi  are subject to measurement ("sampling") va r ia t i on ,
then the regression line can still be calculated as given above, but i t s
interpretation changes, as do the tests of significance.  For the most part, t h e
assumptions for linear regression are somewhat less troublesome than f o r
ANOVA in general. However, we usually need large numbers of replicates to do
any testing of the assumptions. Possibly the most important precaution is to b e
sure that any replicate values of y are indeed obtained independently. I n
much ecological data it appears likely that the variances of sets of y - va lues
may be proportional to the xi  at which they are taken, or that the coef f i c ien ts
of variation of the replicate y-values may be approximately constant. The F-
tests will then be less-reliable. However, simple linear regression is q u i t e
"robust" to uncertainties about the assumption of normal errors, so long as t h e
x-values are not subject to error.

A simulation is useful in appraising the assumptions for simple l i n e a r
regression. Using eq. (1.17) as

            yi = 2 + 0.30xi + εi

b t d f± α , . .s                                                      b (1.16)
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with the xi  as 1,2,3, ... ,10 and the ε i generated as observations from a n o r m a l

distribution with mean 0 and variance = σ2 = 1, one can generate a table o f
"data" as before. This was done to produce a set of data for 20 regression lines.
The first 5 data sets are as follows:

Simulated yi
x True y 1 2 3 4 5
1 2.30 2.86 1.28 2.61 3.26 1.88
2 2.60 0.90 2.08 2.58 1.68 1.11
3 2.90 1.56 3.35 1.35 4.28 3.50
4 3.20 3.85 2.84 2.02 3.67 2.46
5 3.50 1.62 4.20 4.87 1.49 4.68
6 3.80 4.39 5.78 5.22 2.77 3.62
7 4.10 3.66 2.61 4.70 4.24 4.99
8 4.40 3.95 3.90 5.98 2.59 3.81
9 4.70 4.45 6.15 6.41 5.53 3.72
10 5.00 4.50 5.53 6.09 3.54 4.32

Note that the simulated data vary appreciably from the "true values" computed
from yi  = 2 + 0.30xi, which appear in the second column above. The s imulated
data points should follow a normal distribution around the true r e g r e s s i o n
line. Plotting the data (Fig1.5) suggests a certain amount of clumping near t h e
center in some cases, but also shows considerable variability around the t r u e
line. If we plot all 200 deviations used to construct the simulations (20
simulations for each of 10 x-values (Fig. 1.6) then it does appear that t h e
underlying distribution is roughly symmetrical, but it should be apparent t h a t
one cannot do much testing for normality with smaller samples (say 10 or 20)
of deviations from a regression line.
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Fig. 1.6 Plot of 200 normal deviations with mean zero and unit variance used t o
obtain 20 regression simulations.

The regression program in EXCEL used to produce Table 1.1 was run o n
all 20 sets of generated data and the estimates of intercept (a) and slope ( b )
were tabulated along with the residual M.S. (s2) and the confidence limits f o r
b. The error M.S. estimates ranged from 0.5 to 2.41, but averaged 1.05, v e r y
close to the expected 1.0. Estimates of the intercept (a; true value 2.0) r a n g e d
from 0.2 to 2.83, averaging 2.02, while slope estimates (b; true value 0.30)
ranged from 0.11 to 0.54, averaging 0.31. The 95% confidence limits (Fig. 1.7)
for the 20 regression estimates of the slope (b) vary considerably, but i n c l ude
the true value in 19 of 20 cases, as expected (0.95(20)=19). It should be no ted
that this was a fortuitous outcome -- much larger simulations would be needed
to be sure that the confidence limits actually include the true β  in 95% of cases.
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Fig. 1.7 Confidence limits (95%) for slope of 20 simulated regression l i nes ,
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shown with the true value (0.30). Note that confidence limits for the 3rd da ta
set do not include (are above) the true value.

1.5  Multiple regression

Multiple regression is somewhat of a risky proposition for ecologists,
inasmuch as relationships between several ecological variables tend not to b e
linear. However, it can be used to explore curvilinear relationships (which w e
will do below and in the Exercises) and there are various circumstances w h e r e
a linear model may be useful. It is also true that a multiple regression model i s
behind many other kinds of analyses. The analysis of variance can be ob ta ined
through a multiple regression model, but with a different structure than t h a t
used here.

The general model is like that for simple linear regression, but adds
more independent variables. We will use 2 here, but EXCEL will compute models
with many x-variables. The basic model is:

and the same assumptions are made. We again minimize the sum of s q u a r e s
leading to normal equations in three variables and the following solutions f o r
the parameters (a, b1, b2) :

                      a = y
_

  - b1x
_

 1 -  b2x
_
 2                                        (1.19)

w h e r e :

Our first use of the above equations will be with x = x1 and x2 = x2, which m a y
look suspicious, but the purpose is legitimate inasmuch as we can now fit a
second-degree polynomial (a "quadratic" to many statisticians) as an aid i n
studying curvature in regression data. To illustrate, we use the deer data of Fig.
1.3 getting the curve of Fig. 1.8. Snedecor and Cochran (1967) show how to do
the Analysis of variance in regression in stages, fitting first x1 and then x2 t o
see whether there is any gain in adding a second variable. In the present case,
we know that the second variable is necessary to yield a curve.

b x x y y x x x x x x y y x x Di i i i i i i1 2 2
2

1 1 1 1 2 2 2 2= − − − − − − − −[ ( ) ( )( ) ( )( ) ( )( )]/Σ Σ Σ Σ

b x x y y x x x x x x y y x x Di i i i i i i2 1 1
2

2 2 1 1 2 2 1 1= − − − − − − − −[( ( ) ( )( ) ( )( ) ( )( )]/Σ Σ Σ Σ

D x x x x x x x xi i i i= − − − − −Σ Σ Σ( ) ( ) [ ( )( )]1 1
2

2 2
2

1 1 2 2
2

y x xi i i i= + + +α β β ε1 1 2 2                                                     (1.18)
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Fig. 1.8. Second degree polynomial fitted to deer data of Fig. 1.3, using mu l t i p le
regression with x1 = x, and x2 = x2.

Multiple regression can be used for a wide variety of analyses. For example,
the analysis of variance can be represented and computed in a mu l t i p le
regression format. A wide range of analyses based on multiple r e g r e s s i o n
equations are described in some statistic texts under the heading of "Genera l
Linear Hypotheses".

1.6 A test for significant deviations from regression using replicate points.

A test for significant deviations from linearity depending on fitting a
curve and testing to see whether the improvement in fit might simply be d u e
to chance will be discussed in the next section. In some cases, h o we v e r ,
replicate counts may be available, so that one can use the variability w i t h i n
years to test significance of deviations from linearity. This is the p r e f e r r e d
approach, when available. The advantage is that we do not need to specify a n
alternative model like the quadratic or cubic, which may very well be t h e
wrong model. Note, for example, that population growth data such as that o f
Fig. 1.8 are known to follow an exponential or geometric curve rather than t h e
second degree polynomial used in Fig. 1.8. Some counts of brown bears a t
spawning streams provide an example for the test (Fig. 1.9). In this case, t h e
test consists of making the usual analysis of variance to test for significance o f
the linear regression (Table 1.2), and then using the pooled variance o f
individual observations within years to estimate "pure error" (Draper a n d
Smith 1998:49). The data for calculation of pooled error appear in Table 1.3. A
sum of squares of deviations from the mean is calculated for the data in e a c h
year where there are two or more observations and these values are summed t o
give an overall sum of squares, which is subtracted from the "residual" sum o f
squares in Table 1.2 to yield the "lack of fit" sum of squares (i.e., the va r i ab i l i t y
not accounted for by "pure error"). The number of counts used to ca lcu la te
pure error (32) is similarly subtracted from the degrees of freedom f o r
residual error to get the degrees of freedom used to calculate a mean square f o r
"lack of fit". The resulting F-test indicates significance at the 0.05 level, b u t
there does not seem to be much evidence of a consistent pattern of change i n
Fig. 1.9.
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Table 1.2 Test of significance for deviations from regression
d f SS MS F Prob.

Regress ion 1 0.127 0.127 6.258 0.016
Residual 47 0.954 0.020
Total 48 1.081

Lack of fit 15 0.479 0.032 2.150 0.034
Pure error 32 0.475 0.015

1 11 09876543
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Fig. 1.9 Logarithms of counts of brown bears on salmon spawning streams.

Table 1.3 Data for computation of "pure error" for brown bear counts.

Sum of
Y e a r B e a r s / h o u r l n

( b e a r s / h r )
squ a r e sd.f.

3 39.85 9.5219
3 64.04 4.1595
3 61.88 4.1252
3 61.2 4.1141
3 55.24 4.0117 0.2819 4
4 68.7 4.2297
4 59.3 4.0826
4 67.9 4.2180
4 65.3 4.1790 0.0134 3
5 49.4 9.9000
5 51.4 9.9396
5 61.6 4.1207
5 47.4 9.8586
5 52.45 9.9599 0.0400 4
6 51.88 9.9489
7 45.14 9.8098
7 62 4.1271
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7 48.13 9.8739
7 49.58 9.9036
7 51.21 9.9359 0.0572 4
8 62.06 4.1281
8 66.59 4.1986
8 62.32 4.1323
8 66.88 4.2029
8 65.03 4.1748
8 64.58 4.1679 0.0051 5
9 54.17 9.9921
9 67.49 4.2120
9 66.67 4.1998
9 62.8 4.1400
9 61 4.1109
9 62.42 4.1339 0.0311 5
10 48.68 9.8853
10 51.47 9.9410
10 58.51 4.0692
10 57.65 4.0544
10 54.08 9.9905 0.0238 4
11 61.12 4.1128
11 55.15 4.0101
11 68.29 4.2238
11 61.52 4.1194 0.0229 3
Sums2386.08 166.2194 0.4753 32

1.7 Testing for curvilinearity without replications

Trend data are often collected without replications. Occasionally this i s
because an absolute count is made annually of individuals on an area; m o r e
often it is because the investigators cannot afford to make replicate samp le
counts (seasonal changes limit the time that such "replicates" are likely to b e
valid, too). In such circumstances, checking for nonlinearity of r e g r e s s i o n
depends on fitting a straight line and a curved line, and appraising t h e
improvement, if any, provided by the curve. The simplest curve available i s
the second degree polynomial ("quadratic") considered in the section (1.5) o n
multiple regression above. Sometimes it may be worth trying a t h i r d - d e g r e e
polynomial ("cubic"), which is readily computed by multiple regression i n
EXCEL. The model is:

where x1 = x, x2 = x2, x3 = x3. If a graphics program that fits polynomials i s
available, it is worthwhile to use it for a quick preliminary check. Often t h e
3rd degree polynomial has too much curvature, and the practical approach i s
to stick with the quadratic.

The procedure is straightforward. One first fits the simple l i n e a r
regression model, obtaining the ANOVA of Table 1.1. Then fit a quadratic, a n d

y x x xi i i i i= + + + +α β β β ε1 1 2 2 3 3                                                     (1.20)
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obtain the fit illustrated in Fig. 1.8, along with the corresponding r e g r e s s i o n
ANOVA (Table 1.4).

Table 1.4 Analysis of variance in regression based on a multiple regression f i t
of a second degree polynomial (Fig. 1.8) to the deer data.

ANOVA

d f SS MS F Significance
F

Regression 2 30702.90 15351.45 228.19 0.0001
Residual 4 269.10 67.27
Total 6 30972.00

From the linear regression table (Table 1.1), extract the residual sum o f
squares and use it as the first entry in a new table (Table 1.5). From the ANOVA
table giving the multiple regression fit (Table 1.4) also extract the res idua l
sum of squares and make it the second entry in the new table. Use t h e
corresponding degrees of freedom in both cases. Subtract the S. S. f o r
curvilinear regression from the S.S. for linear regression. This quantity, w i t h
1 degree of freedom, represents the improvement in fit provided b y
curvilinear regression and is tested against the M.S. for c u r v i l i n e a r
regression by an F-test. Table 1.5 gives the new arrangement for the deer data.

Table 1.5 Test for curvil inearity of regression using the difference b e t w e e n
Residual Sum of Squares in linear regression and multiple regression.

TEST FOR CURVILINEARITY-ORIGINAL SCALE
SOURCE d.f. S. S. M. S.
Dev. from linear regr. 5 1979.11
Dev. from curvilin. regr 4 269.10 67.27
D i f fe rence 1 1710.01 1710.01

F-RATIO 25.42
SIGNIFICANCE LEVEL 0.0073

Note that the F-ratio in this table is reversed from the usual r e g r e s s i o n
case. Previously we calculated the F-ratio from M.S.regr/M.S.resid, with 1 a n d
n-2 degrees of freedom. Now we use M.S.diff /M. S.dev from curvil. regr ., with 1
and n-3 d.f. (n-3 because the 3 parameters of eq.(1.19) are fit to the data). I n
the rare case of using a cubic model, one would use the same procedure, but n -
4 d.f. because a 4th parameter is fitted in the cubic (3rd degree po lynomia l )
model.

It is worthwhile to look at the equations for residual S.S. on which t h e
test is based. From eq. (1.10) the S.S. for linear regression is:

                       S. S. Residual (linear regr.) = Σ[y i  -(α  + βxi)]2   

The corresponding S.S. for the quadratic (2nd degree polynomial) would be:

S.S. Residual (quadratic) = Σ[y i  -(α  + β1x1i + β2x2i)]2              (1.20)
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From these equations, it can be seen that an improved fit with the quad ra t i c
model should reduce the S.S. considerably. If not, then the F-ratio should b e
small and non-significant.

There are various difficulties in using this test on real data, most ly
associated with the inaccuracies of censusing animals and the very r e a l
prospect that a population may cease to grow for a variety of reasons .
Ecological data are like that! Some statistics books and editors advise c h e c k i n g
assumptions before analyses are published. As noted previously here, s u c h
tests require more data than are ordinarily available, and may thus b e
misleading and contradictory.

Following the advice to test assumptions, one might well use the a b o v e
test to see whether population growth data are linear or non-linear. It i s
worthwhile to conduct such a test as a way to explore the data. An Exercise asks
the student to conduct these tests on actual data on growth of a number o f
populations. Theoretically, the outcome should be that the test will s h o w
nonlinearity and thus lead to using a transformation. In the real world, t h e
results are confusing. The moral is that experience and accepted theory d ic tate
the advisability of a transformation.

1.8  Basic models for population growth

Most ecology textbooks describe population growth by the f a mi l i a r
exponential model:

Nt = Noert    (1.22)

Where Nt is population size at time t, No the starting population size, and r t h e
"instantaneous" rate of population growth. It is worth pointing out that a g r e a t
many populations do not follow the commonly assumed model, inasmuch a s
they reproduce only during a short annual period, and thus follow what h a s
been called a "birth-pulse" model, spurting up in numbers at the time o f
reproduction, and then decreasing through the rest of the year due t o
mortality. Eq. (1.22) describes continuous change, with reproduction a n d
mortality assumed to be going on constantly in any short time period. A model
closer to the truth is of the "compound interest" type:

Nt = No(1 + r)t                                               (1.23)

Thus, where equation (1.22) describes a smoothly ascending continous c u r v e ,
eq.(1.23) describes a "step function" jumping up at specific times and t h e n
staying flat in the interim. Neither model is correct at all times, but they do
agree at specific times. Figure 1.10 sketches out the likely actual time trend o f
a population, along with the results of eqs.(1.22) and (1.23). Either model c a n
be described by Nt = Noλ t, with λ  representing er  or (1+r). When we use a l o g
transform to represent population growth data as a straight line ( t h u s
performing "log-linear" regression), it is important to have in mind t h i s
interpretation of the slope of the regression represented by the two models.
Note that eq. (1.23) is actually only defined at the time of reproduction o r
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recruitment, but the plot (dashed line) connects these “jumps” by a s t r a i g h t
l i ne .
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Fig. 1.10 The two population growth models of eqs. (1.22) and (1.23).

1.9 Testing for differences between regression lines

An essential feature of regression analysis is the ability to d e t e r m i n e
whether a number of fitted regression lines differ. We start out by c o n s i d e r i n g
whether the slopes (β i ) of several lines are significantly different. If not, t h e n
it is logical to test whether the intercepts (α i ) are different. This leads to t h e
Analysis of Covariance, discussed in the next section.

Most of the data for testing equality of slopes comes from t h e
calculations presented in Section 1.4. The main new feature lies in estimating a
common slope. In order to compare the several slopes, we will first need t o
combine individual slopes to obtain a "pooled" value to compare with t h e
individual values. This also can be obtained by weighting the individual s lopes
inversely by their variances. The weights come from the variance estimate f o r
individual slopes, eq. (1.15). A basic assumption in assessing regression lines i s
that they all have the same variance about regression, as estimated by t h e
residual (error) mean square of eq. (1.10).  As always, if there is enough data i t
is worthwhile to test that assumption. Usually only gross differences can b e
detected with small to moderate sized data sets. If we assume a c o m m o n
variance (s2), then the weights can be taken as:

Thus the slope based on the widest spread of x-values gets the most weight, a n d
the pooled slope becomes:

where we have k regression lines to analyze so the summations run from 1 t o
k. In the analysis, we pool familiar sums of squares for the k regression l i nes ,
name l y :

b
w b

w
i i

i

= Σ
Σ

                                             (1.25)

w x

i

n
xi i=

=
−∑( )

1

2                                                          (1.24)
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and use these to arrive at a pooled estimate of the residual (error) sum o f
squares. The resulting mean square is then used as the denominator in an F-
test, where the numerator is:

                       S.S.diff  = Σwi(bi -  b
_

 )2                                      (1.26)

with k-1 degrees of freedom.

For an example, we compare rates of population increase for data o n
deer, horses, and elk. Models for rate of growth (eq. (1.22) or (1.23)) i nd ica te
that the data should be log-transformed (using logarithms to base e ) ,
whereupon the slope of a simple linear regression line will estimate a rate o f
population growth. This rate of increase for deer (Fig. 1.11) is a p p a r e n t l y
appreciably higher than those of the other two species. Note that there will b e
a difference in interpretation of the slopes (b) depending on w h e t h e r
eq.(1.22) or (1.23) is assumed to hold. Details appear in Section 11.2.
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Figure 1.11 Loge transformed data on numbers of three species with f i t ted
regression lines.

The first 3 columns of data in Table 1.5 are calculated from t h e
individual data sets and summed to get the "pooled" data. The slopes (bi ) a r e
calculated from eq. (1.9), and the first 3 sums of squares (S.S.) on the right a r e
calculated from the right side of eq. (1.11), i.e., from SSy - b2SSx, and summed
(totalling 0.363). The fourth S.S. (2.039) in this column is also calculated f r o m
eq. (1.11), but using the "pooled" data, while the S.S. labelled
"Difference between slopes" (1.676) is obtained as the difference between t h e
pooled value (2.039) and the sum (0.363) of the individual sums of squares. T h e
F-test is the ratio of 2 mean squares, 1.676/0.113 = 14.79 with 1 and 18 d.f., and i s

SSy y y SSx x x and SSxy y y x xi i i i= − = − = − −Σ Σ Σ( ) , ( ) , ( )( )2 2  
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highly significant (P = 0.001) as might be expected from the difference i n
regression lines (Fig. 1.11).

Table 1.5. Data for a test of significance of equality of slopes for 3 r e g r e s s i o n
l ines .
Source SSx SSxy SSy Slope d.f. S.S. M.S.
Horses 17.5 3.3760 0.6548 0.1929 5 0.00348 0.00070
Deer 28.0 13.6636 6.9713 0.4880 6 0.30359 0.05060
Elk 42.0 8.0081 1.5830 0.1907 7 0.05608 0.00801

0.36315
Pooled 87.5 25.048 9.209 0.2863 1 8 2.03884 0.11327

Difference between slopes 1 1.676 1.676
F 14.794

Prob. 0.0012

The "Difference between slopes" S.S. of Table 1.5 can be ca lcu la ted
directly from eq. (1.26), using the weights calculated from eq. (1.24) t o

calculate the weighted slope (b
_

 ) of eq. (1.25). The calculations appear in Table
1.6. Note that Table 1.6 is not needed for the F-test but provides some f u r t h e r
insight into the basis for calculations.

Table 1. 6. Calculations for eq. (1.26).

                     Weights   bi           wibi         (bi  - b
_ 

 )2  wi (bi  - b
_ 

 )2

Horse 17.5 0.193 3.376 0.0087 0.1525
Deer 28.0 0.488 13.664 0.0407 1.1394
Elk 42.0 0.191 8.008 0.0091 0.3838

87.5 S u m 25.048 S.S. 1.6757
b - b a r 0.286

Another example concerns a situation where it seems likely that t h e
regression intercept (α ) should be zero. The data come from a study o f
Hawaiian monk seals. These seals occupy 5 sites spread over about 1300 mi les
northwest of the main Hawaiian Islands, and are classified as Endange red
under the Endangered Species Act. To monitor their abundance, " b e a c h
counts" are conducted annually on most of the sites. These amount to t a l l y i n g
all seals seen in covering all beaches on a site. Only a fraction of the seals
using a site are ashore at any given count. However, individual seals can b e
identified by tags, scar patterns, and the use of temporary bleach marks. I n
those instances where many counts can be made over 6 weeks or so, it becomes
possible to achieve a virtually complete tally of the population using the site. A
further description of monk seal dynamics appears in Section 14.5 (Case
Histor ies).

The analysis in this example thus contrasts the mean beach c o u n t s
against population totals for 3 sites, using regression through the o r i g i n .
Because α  is now assumed zero, the regression model becomes yi  = βxi + ei . T h e
least-squares estimate of β  is;

b
y x

x
i i

i

= Σ
Σ 2                                              (1.29)
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which is eq. (1.9) without the means, e.g., Σ(xi  - x
_
 )2 is now Σxi2 . Apart f r o m

this change in definitions, the analysis (Table 1. 7) proceeds as in the p rev i ous
example, with one other exception. Inasmuch as α  is not included in the model,
we use n-1 d.f. where regression analyses with 2 parameters (α  and β) use n - 2
d.f.

Table 1. 7 Data for a test of equality of slopes for 3 regression lines relating mean
beach counts to total abundance for Hawaiian monk seals at 3 sites.

Source SSx  SSxy SSy Slope d.f. S.S. M.S.
KURE           63431   26670.2 11782.3 0.420 11 568.50 51.68
LAYS        6576511     98198.4 60015.1 0.301 9 283.36 31.48
FFS        1338292  410254.5 126842.6 0.307 4        1078.76 269.69

                                   1930.62
Pooled    2059374.0     635123.1 198639.9 0.308 24       2764.196 115.17

Difference between slopes 1 833.580 833.58
F 7.238
Prob . 0.013

It thus appears that there is a significant difference among sites, w i t h
one site (Kure) having a significantly greater slope (b) than the other two,
where the slopes are virtually identical. The two relationships appear in
Fig. 1.12. The site with the largest total counts (French Frigate Shoals) c o nt a i n s
many small islands, some of which are small enough that it has been d i f f i cu l t
to approach seals for identification. The "total" counts at that site have thus n o t
been considered complete, but the data for the recent 5 years (1991-1995)
considered here now suggest that the apparent total counts do agree with t h e
relationship between beach counts and totals at Laysan, suggesting that t h e
FFS data may now approximate actual totals.
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Fig. 1.12. Relationship between mean beach counts and total counts at t h r e e
monk seal population sites. Regression through the origin for Kure is s h o w n
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by a solid line, while the same regression for Laysan and French Fr iga te
Shoals appears as a broken line.

One other issue illustrated by the monk seal data should be discussed
here. This is the aggravating question of "outliers". In some data sets, there a r e
points that seem evidently to lie well away from a trend evident in the bulk o f
the points. This is the case with the Laysan data. There are two years (Fig. 1.13)
that are well away from the trend line (and were not used in the analysis o f
Table 1. 7). Simple and direct methods are not available for deciding to exc lude
"outliers". However, in extreme cases like this one, we can simply consider t h e
probability of such a deviation. The standard deviation of the distribution o f
points around the regression line for Laysan is the square root of the M e a n
Square of Table 1.7, which is 31.48 1 /2  = 5.6. Deviations of the two suspec t
points from the regression line are 65 and 62 units, or about 10 s tanda rd
deviations away from the line. Clearly these two deviations have an ex t reme ly
low probability of arising by chance alone. Corroboration is also available i n
that the two points (they occurred in successive years) represent an i n c r e a s e
in population size that is simply not feasible, and a subsequent decrease t h a t
surely would have been detected (dead seals) if it occurred.
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Fig. 1.13. Position of two aberrant counts at Laysan Island relative to t h e
regression line and data from which it was calculated.

1.10 The Analysis of Covariance

The analysis of covariance depends on the availability of an aux i l i a r y
measurement linearly related to the variable of interest. Consider a o n e - w a y
analysis of the yield (yi ) of fruit trees subjected to several different t r e a t m e n t s
(different types of fertilizer or perhaps insecticides) that presumably w i l l
increase yield. Yield of individual trees may vary with the size and location o f
the tree, so a useful auxiliary variable may be the yield (xij ) of a given tree i n
the year before the treatments were applied. Hence, a one-way model wi t hou t             
information from the auxiliary variable is:
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yij  = µ i  + εi j

but the auxiliary variable can be introduced by:

              yij  = µi  + β(xij  - x
_

 ..) + εi j         (1.28)

so that the adjusted mean for a given treatment becomes:

  y
_

 i. = µi  + β( x
_

 i . - x
_

 ..) + e
_

 i .

The ANOVA for a covariance adjustment then tests whether adjusted means a r e
significantly different. The dot notation is used with multiple subscripts t o

indicate which subscript is involved in averaging. Thus x
_
 i . Denotes t h e

average over j for the ith group.

A key assumption in the analysis of covariance is that the same l i n e a r
relationship holds in all of the treatment groups. Thus we need to use t h e
methodology of Section 1.9 to test the hypothesis that βi within t r e a t m e n t
groups are not significantly different. Some investigators may proceed w i t h
the analysis without testing homogeneity of the slopes. This is not wise u n l e s s
there is a good deal of prior experience on which to base such a decis ion.
Inasmuch as both analyses depend on much the same computations, p r u d e n c e
calls for computing the results given in Table 1.5 and 1.7 in any case.

The data are arranged in the same way as in the previous section, but w e
here assume the same number of observations in each treatment g r o u p ,
giving a table like the following:

      A       B       C
x y x y x y
x11 y1 1 x21 y2 1 x31 y3 1
x12 y1 2 x21 y2 1 x32 y3 2
. . . . . .
x1 j y1 j x2 j y2 j x3 j y3 j
. . . . . .
x1 n y 1 n x2 n y 2 n x3 n y 3 n

To provide an example, a table of data from Snedecor and Cochran follows:

       A        D         F
x y x y x y
11 6 6 0 16 13
8 0 6 2 13 10
5 2 7 3 11 18
14 8 8 1 9 5
19 11 18 18 21 23
6 4 8 4 16 12
10 13 19 14 12 5
6 1 8 9 12 16
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11 8 5 1 7 1
3 0 15 9 12 20

Means 9.3 5.3 10 6.1 12.9 12.3

From the ANOVA for simple regression we had the following results (eq.(1.11):

                                  Total S.S.  -   Regression S.S. =  Error (Residual S. S.)

The error term can be written in various ways

with the last result being most useful here. It is obtained by using t h e
definition of b in developing eq. (1.29) from equation for the Residual ( E r r o r )
Sum of Squares above. The above calculations are expressed for one group o f
data, so in dealing with several groups below, a subscript for the jt h

observation in  the ith group needs to be added.

The calculations proceed by computing the 3 components of eq.(1.29)
and arranging them in an ANOVA type of table in which the Total S.S. i s
calculated from the entire set of data, using overall means of x and y, e .g .w i th

the other values SSy, and SSxy calculated in the same manner. Thus,

                 The Error line is calculated by using the group means, e.g.,

The Between S.S. are readily obtained by subtracting the line for Error S.S.
from Total S. S. These calculations then give the following table from the da ta
above:
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Source d.f. SSx SSxy SSy M.S.
Total 29 665.9 731.2 1288.7
Between 2 72.9 145.8 293.6
E r r o r 27 593.0 585.4 995.1 36.86

The M.S. due to error is calculated from SSy/d.f. = 995.1/27 = 36.86 in the E r r o r
line of S.S. just as it would be done without the auxiliary variable. The o t h e r
entries in the table are needed to obtain a reduction in the error sum o f
squares as shown below.

The "reduction due to regression" is obtained from (SSxy)2/SSx in t h e
Error line, and is subtracted from the Error sum of squares as computed
without the auxiliary variable, giving an estimate of error mean s q u a r e
adjusted by the regression data. The complete calculation of an adjusted e r r o r
mean square is thus:

Source d.f. SSx SSxy SSy M.S.
Total 29 665.9 731.2 1288.7
Between 2 72.9 145.8 293.6
E r r o r 27 593.0 585.4 995.1 36.86
Reduct. due to regr 1 577.9
Dev. from regr 26 417.2 16.05

An estimate of a common slope is also obtained from the error line,
b = SSxy/SSx2 = 585.4/593.0 = 0.987. This value then can be used to get adjusted

values of  y
_

  from the following:

                    y
_

 i,adj  =  y
_

 i . - b(x
_

 i . -   x
_

 ..)

The adjusted mean for the first group of data (group A in the table above) i s
t hus :

                                          5.3 - 0.987(9.3 -10.73) = 6.71 = y
_

 i,adj

The results of the covariance adjustment can then be assembled to produce a
covariance-adjusted F-test, as in the following table:

Table 1.8 Covariance F-test in one-way classification
   

Deviations from regression
d.f. SSx     SSxy     SSy    Reduc.  d.f. S.S. M.S.

Trea tments 2 72.867     145.8    293.6
E r r o r 27 593.000   585.4    995.1   577.9    26 417 16.05
T+E 29 665.867   731.2   1288.7     802.94  28 486

     2 68.6 34.28

The F-ratio is 34.28/16.05 = 2.14 with 2 and 26 d.f. and does not suggest a
significant treatment effect (P = 0.14).

 The whole purpose of the exercise is to get a more sensitive F-test of m a i n
effects than would be possible without the auxiliary variable. Such a n
improvement depends, of course, on the presence of a significant l i n e a r
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relationship between the variable of interest ( yi ) and the auxiliary v a r i a b l e
(x i ), and this relationship needs to be checked out first (i.e., do regressions o n
the data in each group (A, D, and F) first).

1.11 ANOVA as a regression model

To sketch out a basis for doing an analysis of variance with a r e g r e s s i o n
model, we need the concept of a "dummy variable" which is simply a v a r i a b l e
that takes only values of 0 or 1. Consider the multiple regression model:

                                    yi = µ + β1x1i + β2x2i +β3x3i

and let xi = 1 if y i  belongs to a particular group in a one-way ANOVA and 0
otherwise. Then we can write:

y1 = µ + β1
y2 = µ + β1
y3 = µ + β1
y4 = µ + β2
y5 = µ + β2
y6 = µ + β2
y7 = µ + β3
y8 = µ + β3
y9 = µ + β3
y10 = µ + β4
y11 = µ + β4
y12 = µ + β4

and thus have a regression model conforming to a one-way ANOVA with t h r e e
observations in each of 4 groups, giving the general model of E(yi ) = µ + βi , a s
is appropriate for one-way analysis of variance. Draper and Smith (1998) g i v e
extensions to two-way and higher analysis and methods of fitting. T h e
approach is likely not of much importance here, but is mentioned t o
emphasize an earlier remark that models of the multiple regression type c a n
be used for a wide variety of purposes, often subsumed under the heading o f
"General Linear Hypotheses".

1.12  Stepwise regression

This is an approach to regression that permits adding variables one s tep
at a time while searching for the "best" model for a given data set. Consider t h e
test for curvil inearity of Section 1.7. We first fitted a linear regression of t h e
form yi  = α  + β1x1i and then extended the model to become a second d e g r e e

polynomial yi  = α  + β1x1i + β2x2i2, using multiple regression to fit the model. We
then tested for a significant "improvement of fit" by comparing the reduc t i on
in Sum of Squares obtained by subtracting the deviations from c u r v i l i n e a r
regression (Residual S.S.) from the deviations from linear regression, a n d
tested significance of the improvement by an F-test. We noted that the p rocess
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could be extended to a third-degree polynomial yi  = α  + β1x1i + β2x1i2 + β3x1i3 t o
test for a more extreme curvature. We used multiple regression to fit t h e
models, letting x2i = x1i2, (and x3i = x1i3 if the model were extended to test t h e
further improvement of adding a "cubic" term). This kind of procedure i s
employed in stepwise regression, but is not, of course, restricted t o
polynomials. Any series of variables can be tested successively for t h e
improvement of fit produced as each new variable is introduced. Computer
programs are available that will test all combinations of a set of cand ida te
variables but the results are practically guaranteed to be misleading, a s
enough manipulation will almost always produce a "good fit". One should u s e
stepwise regression only when there is a logical sequence of models to test,
and even then it is likely that the final model will be "over-fit" (i .e., have too
many independent variables). One useful approach is to develop a model o n
half the data and check it on the other half. Usually, ecologists do not h a v e
enough data to hold half of it in reserve while studying a model. A n
alternative is known as "cross-validation". In it a series of fits are used a n d
each observation is left out in turn, and used to check the error v a r i a n c e
estimate from the fitted model. Such a test is "computer-intensive", i.e.,
depends on the ability of the modern computer to conduct many ca lcu la t ions
in a short time. Anyone planning to use stepwise regression should consu l t
references like Draper and Smith (1998) first.

1.13  Logistic regression

This is a form of regression analysis developed for data of the b i nom ia l
form, i.e., in which the variable of interest is either 1 or 0 (or "yes" or "no",
"present or absent", etc., which can be coded as 1 or 0). Usually we exp ress
results as a proportion, e.g, the proportion surviving after some time i n t e r v a l
or some treatment. Logistic regression originated in the field of bioassay, i n
which the response to a given dose of some substance is studied quant i ta t i ve ly .
If one plots the response (proportion surviving or otherwise responding t o
some treatment) against the dose (often quantity of some substance given a n
individual) the resulting curve is usually sigmoid (s-shaped). The cumu la t i ve
normal curve provides a convenient s-shaped model, and is used in bioassay i n
"probit" analysis. Details of methods used for bioassay are given by D.J. F i n n e y
(Statistical Method in Biological Assay, 3rd Ed. 1978, Charles Griffin and co., Ltd.
London) .

Joseph Berkson proposed using the logistic function as a bioassay model
in 1944.  The basic model is:

P
e a bx=

+ − +
1

1 ( )                                                       (1.30)

where P denotes the dependent variable and x is the independent v a r i a b l e
("dose" in bioassay). Because P is a proportion,

Q P
e

e

a bx

a bx= − =
+

− +

− +1
1

( )

( )                                      (1.31) 
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and we can now consider the ratio of P and Q:

P
Q  = eα  + βx                                                              (1.32)

The ratio of P to Q is sometimes called the "odds ratio", no doubt because i t
expresses the odds for a particular outcome.

Now the natural logarithm of this “odds ratio” {eq.(1.32)]is a linear function,

ln (
P
Q ) = α  + βx                                                       (1.33)

This is called the "logit" transformation.

There is an interesting sidelight to the logit transform. Consider a t ab le
of proportions (e.g., several species of plants classified by whether they h a v e
flowers, fruits or neither). One can then calculate the natural logarithm of t h e
"odds ratio" and analyze the linear model of eq. (1.33). This is termed l o g- l i n e a r
regression by some authors and can be extended to behave like the analysis o f
variance. It has been used largely in the social sciences, but could well be o f
interest in ecological circumstances where one must analyze tables o f
proportions (or tables in general, for that matter). It should be noted that w e
will also use the term “loglinear regression” to refer to the log transform o f
eq.(1.22).

Example 1.3 An example of logistic regression

In aerial counts of wildlife populations, the number of
individuals in a group has a marked effect on visibility. This has been
studied by using animals with attached radiotransmitters and recording
the frequency of observation of groups containing these individuals.
Such a study of elk has been used to correct for visibility (M. D.
Samuel et al. 1987. Visibility bias during aerial surveys of elk in
northcentral Idaho. Journal of Wildlife Management 51:622-630). The
following table shows the data (only small samples were available so
that larger groups had to be combined).

Table 1.9 Sighting data from an aerial survey of radio-marked elk.

Logit
Group Proportion transformation
size    Missed    Seen   seen    log    e    (P/Q)

1 18 5 0.217 -1.281
2 7 6 0.462 -0.154
3 5 5 0.500 0.000
4 4 6 0.600 0.405
5 4 9 0.692 0.811
6 6 4 0.400 -0.405
11 3 14 0.824 1.540
23 0 10 1.000
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The simplest way to fit this data is to use eq. (1.33), i.e., regress
the logit values (right-hand column) against x. In this case, the
investigators used the logarithm of group size in their analysis, so we
use ln (group size) for x in Fig. 1.14, which shows the regression fit.

Due to the fact that the independent variable is from a binomial
distribution the linear model implied by eq. (1.33) does not give the
best fit to the data. Instead, the technique of maximum likelihood
estimation is recommended. If we assume a particular frequency
distribution (probability distribution function in Section 1.2)
underlies a set of observations, then it may be possible to find
expressions that often minimize the variance of an estimated quantity.
Methods of mathematical statistics are required to derive such
estimators, but many of the commonly-used estimates are also maximum
likelihood estimates. In the present case, there is no simple expression
for estimating the parameters of eq. (1.32) so that an iteritive method
is required to solve the maximum likelihood equations. The method used
here is due to J. Berkson (Tables for the maximum likelihood estimate of
the logistic function. Biometrics 13:28-34, 1957). Maximum likelihood
estimates for logistic regression can also be obtained in some of the
available statistics programs (e.g., SYSTAT).

Fig. 1.14. Regression of logit values on logarithm of group size
from aerial survey of elk.

The parameters obtained from the regression analysis (Fig. 1.14)
are α = -1.118 and β = 0.974, while those obtained from the maximum
likelihood fit are somewhat different, being α = -1.305 and β = 1.155.
Fits to eq. (1.30) are not substantially different (Fig. 1.15).
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Fig. 1.15  Fits of eq. (1.30) to observed data on elk sightability
using regression (eq.(1.33) and maximum likelihood methods.

Example 1.4

Two further examples (Fig. 1.16) are based on reproductive rates
in Hawaiian monk seals at two sites. The curves were fitted as above,
using regression and maximum likelihood estimates.
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Fig. 1.16 Logistic fits of reproductive rates against age of the
female for Hawaiian monk seals at two sites.
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In the upper curve, it appears that the regression and maximum
likelihood methods give about the same results, while neither
provides much of a fit in the lower curve. Deteriorating
conditions (poor food supplies and survival) at the site may be
changing the curve, so that it does not represent a stable
situation. Circumstances at the site shown in the upper curve have
been reasonably good, but there is no particular reason to suppose
that reproductive rates should follow a logistic curve.

For comparison, some data on judging sound intensity were
fitted by the two methods (Fig. 1.17). These data appear to fit
the logistic very well, and the two methods of estimation give
virtually indistinguishable results.
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Fig. 1.17. Logistic curve fitted to data on judging sound
intensity.

1.14  Locally weighted regression

When there is no suitable model for a curve, locally w e igh ted
regression provides a way to fit a smoothed line. The method is variously ca l led
"loess" or "lowess". Some authors use "loess", but ecologists will no doubt b e
confused by the implication of wind-deposited soil!. Weighted l i n e a r
regressions are fit at each point on the graph (e.g., if the data span 30 yea rs ,
then such regressions are fit at each of the 30 years) by selecting data po in t s
in the immediate neighborhood of each point on the x-abcissa. The number o f
points in each such neighborhood might be taken to be, say, about 30% of t h e
total number of observations. However, this can be varied in the f i t t i n g
program, and depends on the purpose at hand. If one wants a t h o r o u g h
smoothing, then 50% or more of the points might be used in each reg ress ion .
If the smoothed curve is to follow the data point closely, then  a small f r ac t i on ,
perhaps as little as 10%, of the points should be used in each f i t t i ng .
Experimentation with the fitting program will help in developing a n
approach for a particular data set. Weights diminish by a cubic function, so
points very near to the selected point get by far the most weight. The f i t ted
regression line determines only the y-value for the selected abcissal value. I n
effect, the technique behaves much like a moving average, but has va r i ous
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advantages. Programs to produce lowess fits are available. SYSTAT has a
routine for lowess fitting in the plotting routine (after loading the data in a
file, bring up "plot", and select the "smooth" function. It will t hen b e
necessary to indicate the fraction of the data points to use in e a c h
neighborhood). The lowess method was developed by W. S. Cleveland ( J o u r n a l
Amer. Statistical Assoc. 74:829-836).

The smoothed line in Fig. 1.18 illustrate the technique. This approach to
smoothing is preferable to the usual moving-average smoothing because it
does not leave blanks at the end of the series, and uses what seems to be a
better averaging approach. The lowess technique can be illustrated by
smoothing French Frigate Shoals monk seal beach count data. At each point
along the line (here, each year) the nearest n points are used to form a
weighted linear regression (9 points were used in producing Fig. 1.18). The
regression line is used only to determine the smoothed value for the given
point. Inasmuch as the weights and the regression line must be computed for
every point used along the x-axis (the years 1957 to 1993 in the present
example), enough calculations are involved to make use of a computer
des i rab le .
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Fig. 1.18. Locally-weighted regression line ("lowess" smoothing) for the
French Frigate Shoals monk seal beach counts. For each year on the graph, a
weighted linear regression is computed from the n nearest points, with the
contribution of each point weighted by a cubic function of distance of the data
point from the base point. The regression line for 1987 is shown on the graph,
along with the weights assigned to the 9 nearest points. The regression line
determines only one point on the smoothed line.

1.15  Non-linear least-squares

The method of least-squares was discussed in Sec. 1.4, and eq.(1.6) w a s
used to develop least-squares estimates for linear regression. The s a m e
approach can be used to fit non-linear functions, starting with the s a m e
equation for sum of squares:

S = Σ[y i  -f(x)]2  
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where f(x) is now some non-linear function, such as the logistic function o f
eq. (1.30). One could find a minimum for the sum of squares, S, by a d i rec t
search routine. This is labor-intensive, and there are various c o mp u t e r
programs that do the job very quickly and efficiently. Some of these call f o r
partial derivatives of the function (used to "linearize" the function so that t h e
approach to a minimum can be done in successive iterations). Others u s e
numerical approximations to the partial derivatives, or direct search rou t ines .
SYSTAT contains two such routines under the "nonlin" function. It r e q u i r e s
that a model be furnished, but this can be written in the notation used in EXCEL
(really statements in BASIC language, which underlies EXCEL). Thus eq. (1.30)
is entered as:

               P = 1/(1 + EXP(-(A+B*X)))

The data need to be entered by using the Editor function (or can be read i n
from an EXCEL file, or copied to the Editor via a clipboard). Names used f o r
variables (P,X) above are used as column headers in the data file, and t h e
SYSTAT fitting routine recognizes the other labels (except built-in f u n c t i o n s
like EXP) as variables to fit (such as A and B above). Trial values can b e
furnished (i.e., rough estimates of A and B) and the number of iterations c a n
be set (these have built-in "default" values). It may be necessary to use t r i a l
values if the program doesn't converge in, say 20 iterations (the de fau l t
value)), but further iterations can be tried, first. Since the program i s
iterative, it may get stuck in various ways, and it is then desirable to quit, a n d
start over with different guesses at starting parameters.

1.16 Exercises

1.16.1 Coin-tossing. Students should try a coin-tossing experiment like the o n e
reported in example 1.1. Put 10 coins in a jar and make 100 tosses, r e c o r d i n g
the number of heads in blocks of 10. Make a frequency distribution a n d
compare it with Fig. 1.1. Try another set of 100 and compare the two f r e q u e n c y
distributions. Compute the sample means and variances, and compare t h e m
with the theoretical values.  

1.16.2 Simulating the binomial on a computer. Coin-tossing gets tiresome a f t e r
awhile, and it is important to look at a different probability model. In order t o
get large samples without the tedium of mechanical approaches, we can r e s o r t
to the computer. Students familiar with a programming language will l i ke l y
prefer to write a simple program. However, useful results can be obtained i n
EXCEL and are readily in reach of those without programming exper ience .
Those with only a passing experience with EXCEL may have to resort to t h e
HELP function (or a colleague with experience) but it is important to carry o u t
the following exercise because it should provide a capsule view of “ mo n t e
carlo” simulations. Also, the next two chapters on bootstrapping depend on u s e
of EXCEL. Insert the statement “=RANDBETWEEN(0,1)” in a cell in an EXCEL
spreadsheet, and copy down to fill 10 cells in a column. This generates a se r i es
of 0’s and 1’s with probability 1/2 of getting either. Now copy the row to t h e
right for 100 columns (it is convenient to use the automatic numbering sys tem
in a column above the 10 entries to keep track—a handy little number pops u p
beside to indicate how many numbers you have entered). Now sum t h e
columns (use the summation function in the legend at the top of the shee t ) .
This row of numbers (the sums) is now equivalent to the table of data i n
Example 1.1. Now use the histogram procedure (in the Tools menu) to c o n s t r u c t
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a histogram of frequencies of results. These should approximate the bars i n
Fig. 1.1. Note that every time you make a change in the worksheet i t
recalculates the table of random values (this function can be turned off). It i s
worthwhile to calculate several histograms just to get a notion of how v a r i a b l e
the outcomes are. Next calculate the expected values from eq.(1.1). Find t h e
factorial function (“FACT” in Math and Trig functions). Actually, all you n e e d
to know is that FACT(5) gives the value of 5! Use this function to calculate t h e
factorial part of eq.(1.1) next to a column numbered 0 to 10. Then enter the r e s t
of the equation in the next column (because p=0.5=1-p these entries will all b e
the same, but we’ll use the approach for a case where p is not 1/2 below). T h e
product of the two columns gives the proportions of eq.(1.1) which add t o
unity. Now multiply 100 times the proportions, and you have the expected
values, which should approximate what you have in the histograms. The Cha r t
Wizard in EXCEL will plot expected and observed values (you need to look u n d e r
“Custom Types” to find one that plots a line and bars). One last chore is t o
recalculate the expected values using a value of p=0.9 which gives a d is t inc t ly
asymmetric graph. It is always useful to put the numerical value of p a b o v e
the calculations and use the “$” (e.g.,$A$30) notation to denote p i n
calculations for the equation. This lets one experiment with different values o f
p.  Students should save a worksheet with the above calculations in order t o
have it for further reference when we consider other f r e q u e n c y
dis t r ibut ions.

1.16.3 Random sampling There will be a great deal of emphasis on r a n d o m
sampling in this course. A relatively new topic in statistical methodo logy
called bootstrapping will be used extensively. It depends on random s a m p l i n g
with replacement. Courses and books on sampling methodology usually d e p e n d
on sampling without replacement. Consider using a number of sample plots t o  
make counts of plants in order to estimate overall density of some species o f
plant. Such plots should be located at random in order to assure an unb iased
estimate of density, and secure a reliable estimate of variance. Ordinarily, a n
investigator would find some way to assign a number to all possible plots in t h e
area to be studied, and locate the sample plots by consulting a table of r a n d o m
numbers. If the same plot is drawn twice, it would not be counted twice, as t h i s
usually makes no sense. Hence we describe this as sampling wi t hou t
replacement. Textbooks on sampling show that it usually doesn't make m u c h
difference whether we do in fact sample with replacement, inasmuch as as t h e
sample usually is a small fraction of the total population. Boots t rapping,
however, depends on sampling with replacement as a way to reflect t h e
underlying frequency distribution. Consequently, most of our samples will b e
with replacement. We will be taking repeated random samples w i t h  
replacement of a data set. The individual entries in the data set will be in a
computer file, and we will randomly select individual entries from this file. I t
is convenient to number the data items from 1 to n, and we then need t o
generate random numbers. To illustrate the approach, e n t e r
“RANDBETWEEN(1,10)” in a cell in EXCEL and copy down the column for 100
entries. Make a histogram of the data, as in Example 1.16.2. This is a samp le
from a uniform distribution, i.e., a frequency distribution where t h e
probabilities are all equal. It is the distribution underlying random samp l ing .
It is easy to extend the process to, say, 1,000 draws as in the f r e q u e n c y
distribution plotted below. Note that it is still quite variable, even with 1,000
draws. Make a graph of your data like the following using the Chart Wizard
and post it on a spreadsheet with the calculations.
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1.16.4 Simulating a discrete skewed distribution. In Exercise 1.16.2 s tudents  
were asked to calculate expected values for a binomial frequency dis t r ibu t ion
[eq.(1.1)] with p=0.9. A skewed frequency distribution is not hard to s imulate,
requiring two changes to the methods used in Exercise 1.16.2. Instead o f
RANDBETWEEN(0,1) we use “=RAND()” (don’t put anything in the p a r e n t h e s )
which provides random numbers between 0 and 1. We also need an “ IF”
function which is the basis for a lot of computer work. It evaluates a n
expression and chooses between two output values, depending on whether t h e
expression is true or false (there are a number of different express ions
working along these lines, but we use the simplest here). Set up a sp readshee t
with a column of 10 values of “=RAND()”, and copy it to the right 100 times. We
again need a numerical value of p above this table for reference, which m a y
be say 0.9. If the first entry in the first column is in position, say, D9, then i n
the column just below this first column the first entry should b e
“=If(D9>=$A$3,1,0)” where the value of p is in $A$3. Copy down 10 and ac ross
for 100 columns and sum these entries. The IF function checks to see if t h e
entry in D9 exceeds p and enters 1 if true and 0 if false. The sums then p rov ide
the basis for a histogram of a skewed discrete distribution. Make h i s tog rams
with p=0.1, and p=0.5. Compare the histogram with p=0.5 with the one you made
in Exercise 1.16.2. Make a new calculation of eq.(1.1) with p=0.9 and compare i t
with the histogram with p=0.1 (actually you should have made one in Exercise
16.1.2  and need only copy it over to this worksheet for comparison. Plot t h e
data in Chart Wizard (expected and observed values). It should look like t h e
following graph:

1.16.5.  Do the algebra to calculate the expected value of eq.(1.1) as given in t h e
right side of eq.(1.2).
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1.16.6 Simulating a continuous skewed distribution. A continuous r a n d o m
variable is one that has values in the real domain. For our purposes, t h i s
means values like those generated by RAND() -- any number within the ra n g e
considered (i.e., from 0 to 1). We will consider one way to generate r a n d o m
variables from an exponential distribution here. Consider the function:
                                                      F(x) = 1 - e-βx                                                       (1.34)
 This is an example of a cumulative distribution or cumulative dis t r ibu t ion
function. It takes values from 0 to 1, and has one parameter, β, which con t ro l s
the rate at which the function approaches unity. The graph below shows t h e
function for β = 0.1 and β = 0.5.
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Fig. 1.19 Plot of cumulative distribution function for the exponen t i a l
distribution for values of β  = 0.1 (solid line) and β  = 0.5 (broken line).

We use the cumulative distribution function here because it takes values f r o m
0 to 1, and we can take a random sample from that range (using RAND()) a n d
translate that to find the corresponding x value, by rearranging eq. (1.34) as

Thus the procedure is to draw a random sample of values from RAND() and look
up the corresponding values of x. Eq. (1.34) is the integral of an exponen t i a l
distribution over the range 0 to x, hence the name "cumulative". To c o m p a r e
the outcomes of a simulation with the equation for the frequency d is t r ibu t ion ,
one runs a simulation as described in Exercise 1.16.4, and plots the resu l ts .
Differentiating the cumulative yields the frequency distribution:

                                            f(x) = 
dF(x)

dx   = 
d e

dx

x[ ]1− −β

= βe-βx                                   (1.36)

Students whose calculus is a little rusty may want to look up the formula f o r
finding a differential of an exponential; others may want to accept t h e
statement without derivation. We need the right side of eq.(1.36) only to b e
able  to compare simulation outcomes with the theoretical model, given in t h e
figure below. Produce a column of 1000 random variables [F(x)] from RAND()
and convert them with eq.(1.35), make a histogram of the results (using 30
“bins”) and then calculate the expected values by multiplying eq.(1.36) t imes
1000.  Plot these as before and see how your result compares with the g r a p h
below.

x F xe= −1
1

β
log ( ( ))                                           (1.35)
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Fig. 1.20. Simulated exponential data compared to theoretical curve.

1.16.7 Simple linear regression. Data on counts of deer on a study area a r e  
given below. Fit the linear regression of Fig. 1.3 by using eqs. (1.9). This i s
readily done in EXCEL (in fact, EXCEL has a regression fitting routine which w e
will use for additional exercises, but students should do the ca lcu la t ions
directly from the definitions in order to see how they “work” and then c h e c k
by using the built-in fitting routine). Some graphics programs will also do t h e
fitting automatically.

Year  Number of deer
xi           yI
1 10
2 21
3 52
4 71
5 97
6 146
7 212

1.16.8 Check the fact that a and b give minimum values of eq.(1.6), the sum o f
squares, for the deer data of Exercise 1.16.7. Copy the results of Exercise 1.16.7
into a new worksheet and compute eq. (1.6) for a and b, setting up t h e
worksheet so that a and b are listed as separate entries on the worksheet a s
shown below. Then vary a and b by small amounts and write down t h e
resulting sums of squares in the table. That is, make a table like the fo l low ing
and fill in the entries. It is easiest to first make  your entries in pencil a s
transferring them individually to a summary table in EXCEL calls for a lot o f
tedious use of “Paste Special” in the menu, and/or provides opportunities t o
forget which cell you were working with. You should find a minimum in t h i s
table. If you want to try to get closer to the values of a and b found in Exercise
1.16.6, make a new table with fractional values in the row and c o l u m n
headings (e.g.,31.1, 31.2, etc.) and fill in the new table. This approach p rov ides
a device that is sometimes useful to solve a pair of more complex equa t ions
without needing to use a non-linear least-squares fitting routine. It is tedious
unless you can guess reliably in advance just which part of the “Sums-of -
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Squares” space the answer lies. But the purpose here is just to show h o w
things work.
Sums-of-Squares table(eq.1.6)

b
3 0 3 1 3 2 3 3 3 4

- 3 9 2046
- 4 0
- 4 1 2520

a - 4 2 1987
- 4 3
- 4 4
- 4 5 2184

1.16.9  Use EXCEL and eq. (1.11) to calculate ANOVA for a regression equa t i on
for the data of Exercise 1.16.7 and compare your results with those given i n
Table 1.1.  Now use the EXCEL regression program (found in the same group o f
analysis tools as are the ANOVA programs) to see how it works, and add t h e
results to your direct computations.

1.16.10 Compute the correlation coefficient for the deer data from eq. (1.12). I t
can also be directly computed using a function CORREL found in the f u n c t i o n s
m e n u .

1.16.11 Compute s2
b from eq. (1.15) for the deer data. Now compute it a s s u m i n g

that you have 3 observations (9,10,11) from year 1 and 4 observa t ions
(207,210,212, 219) at year 7 (and no observations for years 2,3,4,5 and 6). You
will need to recalculate everything for the new data. What do you conc lude
about the effect of this arrangement of the data on s2b? Would you r e c o m m e n d
this approach? Why?

1.16.12  Compute confidence limits for b from eq.(1.16) using the following se t
of data. Show details of your computation (i.e., the components of t h e
calculation on a spreadsheet).

1 2.86
2 0.90
3 1.56
4 3.85
5 1.62
6 4.39
7 3.66
8 3.95
9 4.45
10 4.50
Note that the α in eq.(1.16) is not the same as α in the regression model. It i s
standard notation for the probability level. Use α= 0.05 here. You can o b t a i n
the needed t-value from the functions in EXCEL (fx on the Toolbar) which i s
T INV( α ,d.f.) where α  is the desired probability for a 2-tailed t-test. You can r u n
the regression analysis in EXCEL to confirm your results.

1.16.13 Multiple regression. Calculate a multiple regression equation on t h e
following data, using eqs.(1.19) and check your results in EXCEL. The data w e r e
used in an early effort to construct an index of abundance for grizzly bears i n
Yellowstone National Park. Use the logarithm of the count as y and “Yr.” As x1
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and “Freq. Sight” as x2. It is important not to use the actual 4 digit year as x1
because it can cause a loss of accuracy when larger data sets are involved.
 Year      Count   ln count   Yr.  Freq. sight.

1976 17 2.8332 1 1.64
1977 1 3 2.5649 2 1.50
1978 9 2.1972 3 1.28
1979 1 3 2.5649 4 1.08
1980 1 2 2.4849 5 1.40
1981 1 4 2.6391 6 1.58
1982 1 1 2.3979 7 1.62
1983 1 3 2.5649 8 1.20
1984 1 7 2.8332 9 2.29
1985 9 2.1972 1 0 2.00
1986 2 5 3.2189 1 1 3.12
1987 1 3 2.5649 1 2 1.64
1988 1 9 2.9444 1 3 2.12
1989 1 6 2.7726 1 4 1.86
1990 2 5 3.2189 1 5 1.95
1991 2 4 3.1781 1 6 2.65
1992 2 3 3.1355 1 7 1.65
1993 2 0 2.9957 1 8 1.67
1994 2 0 2.9957 1 9 1.47

1.16.14  Perform the test for curvil inearity described in the text (Sec. 1.7) a n d
illustrated in Table 1.5 on the following sets of data. Make a sp readshee t
containing the ANOVA tables (as in Table 1.5); note that the deer data are a lso
included here so you have an example of the expected results at hand) a n d
discuss the results as they apply to the notion that one should test for t h e
assumptions before doing an analysis. Do the tests of the ANOVA tables p rov ide
convincing evidence of nonlinearity in the data?

Year Horses Year Deer Year Elk
1 3 4 0 1 1 0 1 3 1 7 2
2 4 2 3 2 2 1 2 4 3 0 5
3 4 8 2 3 5 2 3 5 5 4 3
4 6 1 1 4 7 1 4 7 2 8 1
5 7 6 2 5 9 7 5 8 2 1 5
6 8 7 9 6 1 4 6 6 9 9 8 1

7 2 1 2 7 1 0 5 2 9
8 1 2 6 0 7

Year Gray seals Year Muskox
1 7 5 1 1 4 9
2 8 5 4 2 5 7
3 8 6 9 3 6 5
4 8 9 8 4 6 1
5 1 0 1 9 5 7 6

1.16.15  The following data are replicate monk seal beach counts from F r e n c h
Frigate Shoals. Conduct a test for significant deviations from regression u s i n g
the “pure error” model of Section 1.6. There may be an advantage in u s i n g
logarithms of the counts (to approximately “normalize” the data), as was d o n e
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in Section 1.6, but try the analysis without the log transform. Report y o u r
results in an analysis of variance on a spreadsheet, as in Table 1.3.

1 9 8 5 2 9 8 1 9 9 0 2 6 4 1 9 9 4 1 9 3
2 5 0 2 7 1 1 8 3
3 0 1 2 6 2 2 1 9
4 0 3 3 0 0 1 9 0

1 9 8 6 4 0 1 2 9 9 1 9 6
2 8 5 3 0 0 1 9 8
2 7 8 1 9 9 1 1 7 6 2 0 2

1 9 8 7 3 5 1 1 9 1 2 3 2
2 8 5 2 1 6 2 2 2
3 1 6 2 1 7 2 4 9
3 0 1 1 9 7 1 9 9 5 1 4 1
3 2 0 1 8 5 1 2 4
3 5 0 2 8 1 1 6 8
3 3 3 2 7 3 1 3 2
2 5 2 1 9 9 2 2 0 4 1 4 0
3 6 2 2 0 2 1 4 4

1 9 8 8 2 9 2 2 2 6 1 7 4
3 0 3 2 2 7 1 5 6
2 8 8 2 3 4 1 6 4
2 8 6 2 7 1
3 1 5 2 3 1
3 2 7 1 9 9 3 1 5 6
3 2 7 1 9 5
3 5 4 1 8 6

1 9 8 9 3 3 1 1 8 2
3 3 7 1 8 9
3 2 2 2 2 1
3 1 3 1 6 1
2 7 9 1 8 4
2 9 2 1 8 7
3 1 9 2 0 8
3 5 4 1 9 4
3 7 5 2 1 9
3 6 3

1.16.16 The following data are from three years of a survey of harbor porpoises in which
there were replicate transects flown and the transect lengths were recorded.

Year Km. Count Km. Count Km. Count
1986 552 4 8 1987 326.6 1 1988 199.1 1

318 3 1 117.5 1 2 66.5 1 2
445 9 752 3 0 374.7 5
399 5 9 384.4 2 4 685.7 7 1
195 1 58.5 0 333.7 0
150 1 0 223.2 6 311.9 1 8
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Test for significant differences in slopes of regressions of porpoise counts on t ransec t
lengths as done in Section 1.9. Report your results on a spreadsheet.

1.16.17 Perform an analysis of covariance (Section 1.10) on the data of  Exercise 1.16.16,
and report your results on a spreadsheet. Is this a legitimate analysis in view of t h e
results of Exercise 1.16.16? Explain.


